五種基本圖形在解題中的應(yīng)用
初中幾何中有許多基本圖形,這些基本圖形與其它知識點組合在一起,共同演繹著變化無窮的幾何綜合性問題.解決這類問題,一般要分離或者構(gòu) 造 出基本圖形,然后應(yīng)用基本圖形的性質(zhì)及相關(guān)結(jié) 論解決問題.本文 介紹常見的五種基本圖形及其應(yīng)用,供大家參考.
基本圖形1 如圖1所示, 是圓內(nèi)接三角形,直線 經(jīng)過點 .
結(jié)論1 若 ( ),則直線 與圓 相切.
結(jié)論2 若 ( ),則直線 與圓 相切.
應(yīng)用1 如圖2, 是⊙ 的直徑, 、 分別是 的角平分線與⊙ 、 的交點, 為直線 延長線上一點,且 .判斷直線 與⊙ 的位置關(guān)系,并說明理由.
分析 本題考察了角平分線、三角形的外角、等腰三角形、圓周角定理等相關(guān)知識點問題的突破口在于能否識別弦切角基本模型,即 ,問題就轉(zhuǎn)化為結(jié)論1.
基本圖形2 如圖3所示, ,則 , .
這是相似三角形常見的基本圖形,反映的是部分與整體相似,兩個三角形擁有一個公共角,只要再找出一組對應(yīng)角相等即可,利用相似三角形對應(yīng)線段成比例,進而化成等積的形式即可.
應(yīng)用1 如圖4 , 與圓 相切,切點為 ,連結(jié) 并延長,與圓 交于點 、 ,連結(jié) , ,求證:
(1 ) ;
(2)若 , ,求圓 的半徑及 .
分析 這是一道圓與相似三角形的綜合題.已知圓 與 相切,連結(jié) ,則 ,再加上 ,可得 ,證得 ,問題就還原成題目1.問題(2)利用(1)結(jié)論,可建立一元二次方 程求出半徑.
應(yīng)用2 如圖5,直線 經(jīng)過圓 上的點,并且 , ,圓 交直線 于點 、 ,連結(jié) , .
(1)猜想直線 與圓 的位置關(guān)系,并說明理由;
(2)求證 , ;
(3)若 ,圓 的半徑為3,求 的面積.
分析 這是一道涉及等腰三角形、直線與圓的位置關(guān)系、相似三角形、三角函數(shù)值等多個知識點的幾何綜合題.(1)利用等腰三角形的三線合一證得 ;(2)屬于題目1的簡單變形;(3)求 的面積,關(guān)鍵在于求 的長度,難點在于如何利用 這個條件.在 中 , ,即 .觀察發(fā)現(xiàn),由 ,可得到 ,即 ;然后利用第(2)的結(jié)論,轉(zhuǎn)化為方程求解問題,進而求出 、 的長,問題就迎刃而解了.
基本圖形3
1.如圖6,已知 , , 過點 ,且 , ,垂足分別為 、 ,則 , .
2. 如圖7,已知 , ,則 , .
應(yīng)用 如圖8,拋物線 ,點 在拋物線上,點 在直線 上, 能否成為以點 為直角頂點的等腰直角三角形?若 能,求出點 的坐標(biāo);若不能,請說明理由.
分析 過點 作 軸, 直線 ,垂足分別為 , , .當(dāng) , 時, 是以點 為直角頂點的等腰直角三角形.這是解決問題的突破口,通過構(gòu)造“ ”型全等形,使得幾何問題代數(shù)化.
基本圖形4
如圖9,已知,在 中, ,過點 作 ,點 作 ,則 , .
應(yīng)用1如圖10,在正方形 中,以對角線 為邊作菱形 ,使得 , , 三點在同一條直線上,連結(jié) 交 于點 .求證: .
分析 連結(jié) 交 于點 ,問題就還原成基本圖形,證 即可.
應(yīng)用2 如圖1l,已知在平行四邊形 中, , 于 , 于 , 、 交于 , 、 的延長線交于 .有下列結(jié)論:
① ;② ;③ .其中正確的是 .
分析 本題以全等三角形為載體,融入平行四邊形、勾股定理等相關(guān)知識,注重對基礎(chǔ)知識、基本技能的考查.
①②正確,由 及平行四邊形的性質(zhì),得到 , ,所以 .
③正確,
.
基本圖形5
如圖12,在正方形 中,點 、 分別在 、 上, 、 交于點 .
結(jié)論1 若 ,則 (或 或 ).
結(jié)論2 若 (或 或 ),則 .
應(yīng)用 如圖13所示,將圖12中 、 平移至 、 ,上述 結(jié)論依然成立.
老子在《道德經(jīng)》里寫道:“天下難事,必作于易;天下大 事,必作于細(xì)”.數(shù)學(xué)問題的解 決過程亦是如此,將 復(fù)雜問題簡單化,一步步將未知問題轉(zhuǎn)化到已知范圍.在求解幾何問題時,就是要通過觀察、類比、聯(lián)想,把復(fù)雜圖形轉(zhuǎn)化為簡單的基本圖形問題,就能容易獲解.
本文來自:逍遙右腦記憶 http://portlandfoamroofing.com/chuyi/1162366.html
相關(guān)閱讀:2018-2019學(xué)年七年級數(shù)學(xué)上期末試卷(廣州市黃埔區(qū)帶答案和解釋
闂傚倸鍊烽懗鍓佸垝椤栫偑鈧啴宕ㄧ€涙ê浜辨繝鐢靛Т閸婂绱撳鑸电厱妞ゆ劑鍊曢弸鏃堟煟濠靛棛鍩i柡宀嬬到铻栭柍褜鍓熼幃褎绻濋崶椋庣◤闂佸搫绋侀崢浠嬫偂閵夛妇绠鹃柟瀵稿仧閹冲懏銇勯敐鍛骇缂佺粯绻堥崺鈧い鎺嶇椤曢亶鏌℃径瀣仸妞ゃ儲绻堝娲箹閻愭彃濡ч梺鍛婂姀閺呮粌鈻撴禒瀣拺閻犲洤寮堕幑锝夋煙閾忣偅灏柨鏇樺灲閺屽棗顓奸崨顔锯偓顒勬煛婢跺﹦澧戦柛鏂块叄閵嗗懘寮婚妷锔惧幍闂佺粯鍨惰摫缁炬崘宕电槐鎺楊敊閼恒儱鏆楃紓浣介哺閹瑰洤鐣峰鈧崺鈩冩媴鏉炵増鍋呴梻鍌欐祰濡椼劑姊藉澶婄9婵犻潧顑囧畵渚€鎮楅敐搴℃灍闁稿浜濋妵鍕冀閵娧屾殹濡炪倖鏌ㄥú顓烆潖濞差亜宸濆┑鐘插閸n參姊洪幖鐐插闁稿鍔曢埥澶愭偨缁嬭法鍔﹀銈嗗笒鐎氼參鎮¢悢鍛婂弿婵☆垳鍘х敮鑸电箾閸涱喚鎳呯紒杈ㄥ笚濞煎繘濡歌閻eジ姊鸿ぐ鎺濇濠电偐鍋撴繝纰夌磿閸忔﹢寮崒鐐村仼閻忕偟枪娴滅偓銇勯弴妤€浜鹃梺璇″枛閸㈡煡鍩㈡惔銈囩杸闁圭虎鍨版禍鎯р攽閻樺疇澹樼痪鎯ь煼閺屻劌鈹戦崱姗嗘¥濡炪倐鏅濋崗姗€寮诲☉妯锋闁告鍋涢~鈺呮⒑鏉炴媽顔夐柡鍛█楠炲啰鎹勭悰鈩冾潔闂佸搫璇為崘鍓р偓杈╃磽閸屾艾鈧摜绮旈棃娴虫盯宕橀鑲╃枃闂佽宕橀褍顔忓┑鍥ヤ簻闁哄啫娲よ闁诲孩淇哄▍鏇犳崲濞戞埃鍋撳☉娆嬬細闁活厼顑呴湁婵犲ň鍋撶紒顔界懇瀹曟椽鍩€椤掍降浜滈柟鍝勬娴滈箖姊虹粙鍖″姛闁硅櫕鎹囬弫鍐閵堝懐顓煎銈嗘⒐閸庡啿鐣烽妷銉㈡斀闁绘劕寮堕ˉ婊勭箾鐎电ǹ鍘撮柟顖氳嫰閻f繈宕熼鍌氬箥缂傚倸鍊烽悞锕傛晪婵犳鍠栭崯鎵閹烘梹宕夐柧蹇涒偓娑氶┏缂傚倷绀侀惌鍌涚閸洖鏄ラ柛鏇ㄥ灠缁€鍐喐韫囨洜鐭嗛柍褜鍓熷铏规嫚閹绘帩鍔夌紓浣割儐鐢繝寮€n喗鈷戠紒瀣儥閸庡繒绱掓径濠傤暢闁告帗甯掗~婵嬵敄閻愬瓨銇濇い銏℃瀹曨亪宕橀鍕劒闂傚倸鍊风粈渚€骞栭锔藉亱闁糕剝鐟ч惌鎾绘倵濞戞鎴﹀矗韫囨稒鐓熼柡鍌氱仢閹垿鏌¢崪浣稿⒋闁诡喗锕㈤幃娆戞崉鏉炵増鐫忛梻浣藉吹閸犳劗鎹㈤崼銉ヨ摕闁绘梻鍘ч崙鐘炽亜閹扳晛鐏╁┑顔芥礀閳规垿鎮╅顫濠电偞鎸婚崺鍐磻閹炬惌娈介柣鎰皺鏁堥梺绯曟杹閸嬫挸顪冮妶鍡楃瑨閻庢凹鍓涢埀顒佽壘椤︻垶鈥︾捄銊﹀磯濞撴凹鍨伴崜杈╃磽閸屾氨袦闁稿鎹囧缁樻媴閻熼偊鍤嬬紓浣割儐閸ㄥ墎缂撴禒瀣睄闁稿本绮庨悾鑸电節閵忥絽鐓愰柛鏃€娲滅划濠氬Ψ閳哄倻鍘电紓浣割儏濞硷繝顢撳Δ浣典簻閹兼番鍨哄畷宀勬煛瀹€瀣М闁糕晪绻濆畷妤呮晝閳ь剛绱炴繝鍌滄殾闁挎繂鐗滃Σ濠氭⒑瀹曞洨甯涙俊顐㈠暙椤曪綁骞橀钘夆偓鐑芥煕韫囨挻鎲搁柣顓燁殜濮婃椽鎳¢妶鍛咃綁鏌涢弬鐐叉噹缁躲倕鈹戦崒婧撳湱绮婚弻銉︾厪闊洤顑呴埀顒佹礉缁绘岸姊绘担鍛靛綊寮甸鍕闁荤喐鍣村ú顏勎у璺侯儑閸樺崬鈹戦悙鍙夘棡闁告梹娲熼幃姗€鍩¢崒銈嗩啍闂佺粯鍔曞鍫曞窗濡皷鍋撳▓鍨灓闁轰礁顭烽妴浣肝旈崨顓狅紲濠电姴锕ら崯鎶筋敊婢舵劖鈷掑ù锝呮啞閹牓鏌eΔ鈧Λ婵婃闂佽顔栭崰姘舵儗閹剧粯鐓曢柨鏃囶嚙楠炴劙鏌涚€n偅灏い顐g箞椤㈡鎷呯憴鍕伆婵犵數濮撮惀澶愬Χ閸曨偅鍎撻梻浣筋嚃閸n噣宕抽敐澶堚偓浣肝熺悰鈩冩杸闁诲函缍嗛崑鍛存偩閸洘鈷掑ù锝呮啞閹牊銇勮閸嬫捇姊洪悷鏉挎闁瑰嚖鎷�/闂傚倷绀侀幖顐λ囬锕€鐤炬繝濠傛噺瀹曟煡鏌涢幇鍏哥凹闁稿繑绮撻弻銈囩矙鐠恒劋绮垫繛瀛樺殠閸婃牜鎹㈠┑瀣棃婵炴垶甯炲﹢鍛攽閻愭彃鎮戦柛鏃€鐟╁濠氭晲婢跺á鈺呮煏婢跺牆鍔村ù鐘层偢濮婃椽宕妷銉ょ捕濡炪倖娲﹂崣鍐春閳ь剚銇勯幒鍡椾壕濠电姭鍋撻柛妤冨亹閺嬪秹鏌曡箛瀣仾妞ゎ偅娲樼换婵嬫濞戞艾顤€闁诲孩纰嶅銊╁焵椤掑倹鍤€閻庢凹鍘奸…鍨熼悡搴g瓘濠电偛妯婃禍婵嬪煕閹寸偑浜滈柟鏉垮绾捐法绱掗幇顓燁棃闁哄本绋撻埀顒婄秵閸嬪棙鏅堕鍌滅<闁稿本绋戝ù顔筋殽閻愬弶顥㈢€殿喖鐖奸獮鎰償椤斿吋娅� bjb@jiyifa.com 濠电姷鏁搁崑鐐哄垂閸洖绠板Δ锝呭暙绾惧鏌熼幆褏鎽犻柛娆忕箻閺屾洟宕煎┑鎰ч梺鍝勬媼閸撶喖骞冨鈧幃娆戞崉鏉炵増鐫忔俊鐐€曠换妤佺椤掑倹顫曢柟鎯х摠婵挳鏌涘┑鍕姢妞ゆ柨顦靛铏圭磼濡粯鍎撶紓浣介哺濞茬喖宕洪埀顒併亜閹哄棗浜惧┑鐘亾闂侇剙绉寸壕鍧楁煙鐎电ǹ校妞ゎ偅娲樼换婵嬫濞戝崬鍓伴柣搴㈣壘椤︿即濡甸崟顖氱闁瑰瓨绺鹃崑鎾诲及韫囧姹楅梺鍝勮閸庢煡宕愰崼鏇犲彄闁搞儯鍔嶇亸鐗堛亜閵壯冣枅闁哄矉绲介埞鎴﹀炊閳哄倸鍨遍柣搴ゎ潐濞叉ê顫濋妸鈺佺闁绘ǹ顕х粻鐢告煙閻戞ɑ鐓i柟顕嗙秮濮婂宕掑顑藉亾閸濄儮鍋撳銉ュ鐎规洘鍔欓獮瀣晝閳ь剟鎮為崹顐犱簻闁圭儤鍩婇弨濠氭倵濮樼偓瀚�