【摘 要】概念是思維的基本形式,具有確定研究對象和任務的作用。數(shù)學概念則是客觀事物中數(shù)與形的本質屬性的反映,是構建數(shù)學理論大廈的基石,是導出數(shù)學定理和數(shù)學法則的邏輯基礎,是提高解題能力的前提,是數(shù)學學科的靈魂和精髓。因此,數(shù)學概念教學是“雙基”教學的核心。新課程教學改革模式強調的是學生創(chuàng)新精神和實踐能力的培養(yǎng),要實現(xiàn)這一目標,教師必須轉變教學理念,更新教學模式。
【關鍵詞】高中數(shù)學 新課標 概念教學
高中數(shù)學新課程標準指出:教學中應加強對基本概念和基本思想的理解和掌握,對一些核心概念和基本思想要貫穿高中數(shù)學教學的始終,幫助學生逐步加深理解。由于數(shù)學高度抽象的特點,注重體現(xiàn)基本概念的來龍去脈。在教學中要引導學生經歷從具體實例抽象出數(shù)學概念的過程,在初步運用中逐步理解概念的本質。
長期以來,由于受應試教育的影響,不少教師重解題、輕概念,造成數(shù)學概念與解題脫節(jié)的現(xiàn)象,不能很好地理解和運用概念,嚴重影響了學生的解題質量。如何搞好新課標下的高中數(shù)學概念教學?筆者結合參加新課程的學習和教學中的實踐,談一些粗淺的看法。
1 、注重概念的本源、概念產生的基礎,體驗數(shù)學概念的形成過程。
每一個概念的產生都有著豐富的知識背景,舍棄這些背景,直接拋給學生一連串的概念是傳統(tǒng)教學模式中司空見慣的做法,這種做法常常會使學生感到茫然。 由于概念教學在整個數(shù)學教學中起著舉足輕重的作用,我們應重視在數(shù)學概念教學中培養(yǎng)學生的創(chuàng)造性思維。引入是概念教學的第一步,也是形成概念的基礎。概念引入時教師要鼓勵學生猜想,即讓學生依據(jù)已有的知識和材料作出符合事實的推測性想象,讓學生經歷數(shù)學家發(fā)現(xiàn)新概念的最初階段。牛頓曾說:“沒有大膽的猜想,就做不出偉大的發(fā)現(xiàn)!辈孪胱鳛閿(shù)學想象表現(xiàn)形式的最高層次,屬于創(chuàng)造性想象,是推動數(shù)學發(fā)展的強大動力,因此,在概念引入時培養(yǎng)學生敢于猜想的習慣,是發(fā)展數(shù)學思維,獲得數(shù)學發(fā)現(xiàn)的基本素質,也是培養(yǎng)創(chuàng)造性思維的重要因素。
比如在 立體幾何“異面直線的距離”概念 的教學中 ,傳統(tǒng)的教學方法是給出異面直線公垂線的概念,然后指出兩垂足間的線段長就叫做兩條異面直線的距離。這樣做并不能讓學生認識到距離這個概念的本質。教學中可以先讓學生回顧一下過去學過的有關距離的概念,如兩點之間的距離,點到直線的距離,兩條平行線之間的距離,引導學生思考這些距離有什么特點。回顧之后發(fā)現(xiàn)共同的特點是最短與垂直。然后,啟發(fā)學生思索在兩條異面直線上是否也存在這樣的兩點,它們之間的距離是否是最短的?如果存在,應當有什么特征?于是經過共同探索、猜想,如果連結這兩點的線段和兩條異面直線都垂直,則其長是否是最短的呢?最后通過實物模型演示確認這樣的線段存在,且其長是最短的。在此基礎上,自然地給出異面直線距離的概念。這樣做,不僅使學生得到了概括能力的訓練,還嘗到了數(shù)學發(fā)現(xiàn)的滋味,認識到距離這個概念的本質。
2 、在挖掘新概念的內涵與外延的基礎上理解概念。
新概念的引入,是對已有概念的繼承、發(fā)展和完善。有些概念由于其內涵豐富、外延廣泛等原因,很難一步到位,需要分成若干個層次,逐步加深提高。如三角函數(shù)的定義,經歷了以下三個循序漸進、不斷深化的過程:( 1 )用直角三角形邊長的比刻畫的銳角三角函數(shù)的定義;( 2 )用點的坐標表示的銳角三角函數(shù)的定義;( 3 )任意角的三角函數(shù)的定義。由此概念衍生出:( 1 )三角函數(shù)的值在各個象限的符號;( 2 )三角函數(shù)線;( 3 )同角三角函數(shù)的基本關系式;( 4 )三角函數(shù)的圖象與性質;( 5 )三角函數(shù)的誘導公式等。可見,三角函數(shù)的定義在三角函數(shù)教學中可謂重中之重,是整個三角部分的奠基石,它貫穿于與三角有關的各部分內容并起著關鍵的作用。
再如講解“函數(shù)單調性” 的概念時,給出概念后應該對其進行剖析: (1)x 1 ,x 2 是該區(qū)間內任意的兩個實數(shù),如果忽略任意取值這個條件,就不能保證函數(shù)是增函數(shù) ( 或減函數(shù) ) ,然后舉例說明。 (2) 函數(shù)的單調區(qū)間是其定義域上的子集. (3) 定義的內涵與外延:內涵 : 用自變量的變化來刻劃函數(shù)值的變化規(guī)律 . 外延 : ①一般規(guī)律:自變量的變化與函數(shù)值的變化一致時是單調遞增,自變量的變化與函數(shù)值的變化相反時是單調遞減 . ②幾何特征:在自變量取值的區(qū)間上,若單調函數(shù)的圖象從左向右上升則為增函數(shù),圖象從左向右下降則為減函數(shù) . “磨刀不誤砍柴工”,重視概念教學,挖掘概念的內涵與外延,有利于學生理解概念。
本文來自:逍遙右腦記憶 http://portlandfoamroofing.com/gaozhong/903086.html
相關閱讀:高考數(shù)學答題技巧點撥 找到自己最擅長