2018九年級(jí)數(shù)學(xué)第29章視圖與投影全章節(jié)練習(xí)(人教版帶答案)

編輯: 逍遙路 關(guān)鍵詞: 九年級(jí) 來源: 高中學(xué)習(xí)網(wǎng)

第二十九章 投影與視圖
29.1 投影
01  基礎(chǔ)題
知識(shí)點(diǎn)1 平行投影
1.平行投影中的光線是(A)
A.平行的                  B.聚成一點(diǎn)的
C.不平行的                D.向四面發(fā)散的
2.在下列四幅圖形中,能表示兩棵小樹在同一時(shí)刻陽光下影子的圖形的可能是(D)
 
3.太陽光照射一扇矩形的窗戶,投在平行于窗戶的墻上的影子的形狀是(A)
A.與窗戶全等的矩形 
B.平行四邊形
C.比窗戶略小的矩形 
D.比窗戶略大的矩形
4.(保定章末測(cè)試)在同一時(shí)刻,身高1.6米的小強(qiáng)在陽光下的影長(zhǎng)為0.8米,一棵大樹的影長(zhǎng)為4.8米,則樹的高度為9.6米.

知識(shí)點(diǎn)2 中心投影
5.下列光線所形成的投影不是中心投影的是(A)
A.太陽光線                 B.臺(tái)燈的光線
C.手電筒的光線             D.路燈的光線
6.(保定章末測(cè)試)如圖,晚上小亮在路燈下散步,在小亮由A處走到B處這一過程中,他在地上的影子(C)
 
A.逐漸變短
B.逐漸變長(zhǎng)
C.先變短后變長(zhǎng)
D.先變長(zhǎng)后變短
7.如圖,一盞路燈O、電線桿與三個(gè)等高的標(biāo)桿整齊劃一地排列在馬路一側(cè)的一直線上,AB,CD,EF是三個(gè)標(biāo)桿,相鄰的兩個(gè)標(biāo)桿之間的距離都是2 m,已知AB,CD在燈光下的影長(zhǎng)分別為BM=1.6 m,DN=0.6 m.
(1)請(qǐng)畫出路燈O的位置和標(biāo)桿EF在路燈燈光下的影子;
(2)求標(biāo)桿EF的影長(zhǎng).
 
解:(1)如圖.
(2)連接AE,則AE∥MP.
設(shè)EF的影長(zhǎng)為x m,由相似三角形知識(shí)得:
ACMN=OCON=CENP,即21.6+2-0.6=20.6+2+x,
解得x=0.4.
答:EF的影長(zhǎng)為0.4 m.

知識(shí)點(diǎn)3 正投影
8.一根筆直的小木棒(記為線段AB),它的正投影為線段CD,則下列各式中一定成立的是(D)
A.AB=CD                B.AB≤CD
C.AB>CD                 D.AB≥CD
9.(南寧中考)把一個(gè)正六棱柱如圖擺放,光線由上向下照射此正六棱柱時(shí)的正投影是(A)
  
10.小明拿一個(gè)矩形木框在陽光下玩,矩形木框在地面上形成的投影不可能的是(A)
 

02  中檔題
11.(保定章末測(cè)試)在太陽光下,轉(zhuǎn)動(dòng)一個(gè)正方體,觀察正方體在地上投下的影子,那么這個(gè)影子最多可能是幾邊形(C)
A.四邊形              B.五邊形
C.六邊形              D.七邊形
12.(x疆中考)如圖,某小區(qū)內(nèi)有一條筆直的小路,路的正中間有一路燈,晚上小華由A處走到B處,將她在燈光照射下的影長(zhǎng)l與行走的路程s之間的變化關(guān)系用圖象刻畫出來,大致圖象是(C)
 
 
13.(盧龍模擬)如圖,一根電線桿的接線柱部分AB在陽光下的投影CD的長(zhǎng)為1米,太陽光線與地面的夾角∠ACD=60°,則AB的長(zhǎng)為(A)
A.3米               B.12米 
C.32米               D.33米
 
14.(保定章末測(cè)試)如圖,路燈距地面8米,身高1.6米的小明從距離燈的底部(點(diǎn)O)20米的點(diǎn)A處,沿OA所在的直線行走14米到點(diǎn)B時(shí),人影長(zhǎng)度(C)
A.變長(zhǎng)3.5米             B.變長(zhǎng)1.5米
C.變短3.5米              D.變短1.5米
   
15.(佛山中考)如圖,在水平地面上豎立著一 面墻AB,墻外有一盞路燈D.光線DC恰好通過墻的最高點(diǎn)B,且與地面形成37°角.墻在燈光下的影子為線段AC,并測(cè)得AC=5.5米.
(1)求墻AB的高度;(結(jié)果精確到0.1米,參考數(shù)據(jù):tan37°≈0.75,sin37°≈0.60,cos37°≈0.80)
(2)如果要縮短影子AC的長(zhǎng)度,同時(shí)不能改變墻的高度和位置,請(qǐng)你寫出兩種不同的方法.
 
解:(1)在Rt△ABC中,AC=5.5米,∠C=37°,
tanC=ABAC,
∴AB=AC•tanC≈5.5×0.75≈4.1(米).
(2)第一種方法是增加路燈D的高度,第二種方法是使路燈D向墻靠近.

 

 
29.2 三視圖
第1課時(shí) 幾何體的三視圖
01  基礎(chǔ)題
知識(shí)點(diǎn)1 三視圖的有關(guān)概 念
1.(義烏中考)如圖的幾何體由五個(gè)相同的小正方體搭成,它的主視圖是(A)
 
2.(溫州中考)某運(yùn)動(dòng)會(huì)頒獎(jiǎng)臺(tái)如圖所示,它的主視圖是(C)
 
3.(寧波中考)如圖所示的幾何體的俯視圖為(D)
 
4.(宜昌中考)將一根圓柱形的空心鋼管任意放置,它的主視圖不可能是(A)
 
5.(臨沂中考)如圖所示的幾何體是由五個(gè)小正方體組成的,它的左視圖是(D)
 
6.(遷安一模)下列幾何體中,同一個(gè)幾何體的主視圖與俯視圖不同的是(C)
 
7.(襄陽中考)如圖所示的幾何體是由6個(gè)大小完全一樣的正方體組合而成的,它的俯視圖是(A)
 
8.(麗水中考)如圖是底面為正方形的長(zhǎng)方體,下面有關(guān)它的三個(gè)視圖的說法正確的是(B)
 
A.俯視圖與主視圖相同
B.左視圖與主視圖相同
C.左視圖與俯視圖相同
D.三個(gè)視圖都相同
9.(濟(jì)寧中考)下列幾何體中,主視圖、俯視圖、左視圖都相同的是(B)
 
10.用12個(gè)大小相同的小正方體搭成的幾何體如圖所示,標(biāo)有正確小正方體個(gè)數(shù)的俯視圖是(A)
 
知識(shí)點(diǎn)2 三視圖的畫法
11.(杭州中考)下列選項(xiàng)中,如圖所示的圓柱的三視圖畫法正確的是(A)
 
12.畫出如圖所示幾何體的三視圖.
 
解:如圖. 


02  中檔題
13.(河北中考)如圖是由相同的小正方體木塊粘在一起的幾何體,它的主視圖是(A)
 
14.(邢臺(tái)臨城縣一模)如圖所示的幾何體的俯視圖是(D)
 
15.(菏澤中考)下列幾何體是由4個(gè)相同的小正方體搭成的,其中左視圖與俯視圖相同的是(C)
 
16.一位美術(shù)老師在課堂上進(jìn)行立體模型素描教學(xué)時(shí),把由 圓錐與圓柱組成的幾何體(如圖所示,圓錐在圓柱上底面正中間放置)擺在講桌上,請(qǐng)分別畫出這個(gè)幾何體的三視圖(從正面、左面、上面看得到的視圖).
 
解:如圖.


17.一種機(jī)器上有一個(gè)進(jìn)行轉(zhuǎn)動(dòng)的零件叫燕尾槽(如圖),為了準(zhǔn)確做出這個(gè)零件,請(qǐng)畫出它的三視圖.
 
解:如圖.

03  綜合題
18.中央電視臺(tái)有一個(gè)非常受歡迎的娛樂節(jié)目叫《墻來了!》.選手需按墻上的空洞造型 擺出相同姿勢(shì),才能穿墻而過,否則會(huì)被墻推入水池.類似地,有一個(gè)幾何體恰好無縫隙地以三個(gè)不同形狀的“姿勢(shì)”穿過“墻”上的三個(gè)空洞,則該幾何體為下列幾何體中的哪一個(gè)?選擇并說明理由.
              
解:比較各幾何體的三視圖,考慮是否有短形,圓及三角形即可.對(duì)于A,三視圖分別為短形、三角形、圓(含直徑),符合題意;對(duì)于B,三視圖分別為三角形、三角形、圓(含圓心),不符合題意;對(duì)于C,三視圖分別為正方形、正方形、正方形,不符合題意;對(duì)于D,三視圖分別為三角形、三角形、矩形(含對(duì)角線),不符合題意.故選A.

 
第2課時(shí) 由三視圖確定幾何體
01  基礎(chǔ)題
知識(shí)點(diǎn) 由三視圖確定幾何體
1 .(金華中考)一個(gè)幾何體的三視圖如圖所示,則這個(gè)幾何體是(D)
 
A.球體
B.圓錐
C.立方體
D.圓柱
2.(x疆中考)某幾 何體的三視圖如圖所示,則該幾何體是(D)
A.球                 B.圓柱
C.三棱錐             D.圓錐
 
3.(承德六校一模)如圖是某幾何體的三視圖,則該幾何體是(C)
A.圓錐                  B.圓柱
C.正三棱柱              D.正三棱錐
    
4.(云南中考)若一個(gè)幾何體的主視圖、左視圖、俯視圖是半徑相等的圓,則這個(gè)幾何體是(C)
A.圓柱               B.圓錐
C.球                 D.正方體
5.(武漢中考)某物體的主視圖如圖所示,則該物體可能為(A)
 
6.(唐山古冶區(qū)一模)如圖是由三個(gè)相同小正方體組成的幾何體的主視圖,那么這個(gè)幾何體可以是(A)
 
7.(聊城中考)如圖是由若干個(gè)小正方體組成的幾何體的俯視圖,小正方形中的數(shù)字表示該位置小正方體的個(gè)數(shù),這個(gè)幾何體的主視圖是(C)
 
8.(河北中考)圖中的三視圖所對(duì)應(yīng)的幾何體是(B)
                
9.(深圳模擬)如圖是一個(gè)幾何體的俯視圖,則該幾何體可能是(B)
 
02  中檔題
10.(金華中考)一個(gè)幾何體的三視圖如圖所示,那么這個(gè)幾何體是(D)
  
11.(唐山路南區(qū)一模)如圖為某幾何體的三視圖,則組成該幾何體的小正方體的個(gè)數(shù)是(A)
 
A.5                    B.6               C.7            D.8
12.(懷化中考)如圖,甲、乙、丙圖形都是由大小相同的正方體搭成的幾何體的俯視圖,小正方形中的數(shù)字表示該位置小正方體的個(gè)數(shù),其中主視圖相同的是(B)
 
A.僅有甲和乙相同 
B.僅有甲和丙相同
C.僅有乙和丙相同 
D.甲、乙、丙都相同
13.(保定蓮池區(qū)模擬)一張桌子上擺放有若干個(gè)大小、形狀完全相同的碟子,現(xiàn)從三個(gè)方向看,其三種視圖如圖所示,則這張桌子上碟子的總數(shù)為(B)
 
A.11              B.12                C.13            D.14
解析:因?yàn)橛疑辖堑谋P子有5個(gè),左下角的盤子有3個(gè),左上角的盤子有4個(gè),3+4+5=12(個(gè)),故選B.
14.用4個(gè)棱長(zhǎng)為1的正方體搭成一個(gè)幾何體模型,其主視圖與 左視圖如圖所示,則該立方體的俯視圖不可能是(D)
 
 
15.如圖是由一些完全相同的小正方體搭成的幾何體的俯視圖和左視圖,則組成這個(gè)幾何體的小正方體的個(gè)數(shù)是(C)
 

A.5或6或7                B.6或7 
C.6或7 或8               D.7或8或9
16.根據(jù)如圖所示的幾何體的三視圖描述物體的形狀.
 
解:幾何體的形狀為:
 
03  綜合題
17.某個(gè)長(zhǎng)方體的主視圖是邊長(zhǎng)為1 cm的正方形.沿這個(gè)正方形的對(duì)角線向垂直于正方形的方向?qū)㈤L(zhǎng)方體切開,截面是一個(gè)正方形.那么這個(gè)長(zhǎng)方體的俯視圖是(D)
 
 
第3課時(shí) 由三視圖確定幾何體的表面積或體積
01  基礎(chǔ)題
知識(shí)點(diǎn)1 幾何體的展開圖
1.(保定章末測(cè)試)一個(gè)幾何體的表面展開圖如圖所示,則這個(gè)幾何體是(A)
A.四棱錐              B.四棱柱
C.三棱錐              D.三棱柱
 
2.(宜昌中考)如圖是一個(gè)小正方體的展開圖,把展開圖折疊成小正方體后,與“愛”字一面的相對(duì)面上的字是(C)
A.美               B.麗            C.宜            D.昌
  
3.(唐山路南區(qū)模擬)下列圖形中可以作為一個(gè)三棱柱的展開圖的是(A)
 
4.(梧州中考)如圖是一個(gè)圓錐,下列平面圖形中既不是它的三視圖,也不是它的側(cè)面展開圖的是(D)
 
5.(舟山中考)一個(gè)正方體 的表面展開圖如圖所示,將其折疊成立方體后,“你”字對(duì)面的字是(C)
 
A.中
B.考
C.順
D.利
6.(唐山豐南區(qū)一模)如圖是一個(gè)幾何體的三視圖,則這個(gè)幾何體的展開圖可以是(A)
 
知識(shí)點(diǎn)2 由三視圖確定幾何體的表面積或體積
7.(連云港中考)由6個(gè)大小相同的正方體搭成的幾何體如圖所示,比較它的主視圖、左視圖和俯視圖的面積,則(C)
 
A.三個(gè)視圖的面積一樣大
C.主視圖的面積最小
C.左視圖的面積最小
D.俯視圖的面積最小
8.(湖州中考)如圖是按1∶10的比例畫出的一個(gè)幾何體的三視圖,則該幾何體的側(cè)面積是(D)
A.200 cm2                   B.600 cm2
C.100π cm2                D.200π cm2
 
9.(河北模擬)如圖是一個(gè)長(zhǎng)方體的三視圖(單位:cm),根據(jù)圖中數(shù)據(jù)計(jì)算這個(gè)長(zhǎng)方體的體積是24cm3.
   
10.如圖是某幾何體的展開圖.
(1)這個(gè)幾何體的名稱是圓柱;
(2)畫出這個(gè)幾何體的三視圖;
(3)求這個(gè)幾何體的體積.(π取3.14)
 
解:(2)三視圖為:
 
(3)體積為πr2h≈3.14×52×20=1 570.

02  中檔題
11.(呼和浩特中考)一個(gè)幾何體的三視圖如圖所示,則該幾何體的表面積為(D)
A.4π                B. 3π
C.2π+4             D.3π+4
 
12.(呼和浩特中考)如圖是某幾何體的三視圖,根據(jù)圖中數(shù)據(jù),求得該幾何體的體積為(B)
A.60π              B.70π
C.90π              D.160π
  
13.(濱州中考)如圖,一個(gè)幾何體的三視圖分別是兩個(gè)矩形、一個(gè)扇形,則這個(gè)幾何體表面積的大小為15π+12.
 
解析:由三視圖可以看出這是一個(gè)殘缺的圓柱,側(cè)面是由一個(gè)曲 面和兩個(gè)長(zhǎng)方形構(gòu)成,上下底面是兩個(gè)扇形,S側(cè)=34×2π×2×3+2×3+2×3=9π+12,S底面=2×34×π×22=6π.所以這個(gè)幾何體的表面積為15π+12.
14.(石家莊四十二中一模)由幾個(gè)相同的邊長(zhǎng)為1的小立方塊搭成的幾何體的俯視圖如圖所示.方格中的數(shù)字表示該位置的小立方塊的個(gè)數(shù).
(1)請(qǐng)?jiān)谙旅娣礁窦堉蟹謩e畫出這個(gè)幾何體的主視圖和左視圖.
 
(2)根據(jù)三視圖,請(qǐng)你求出這個(gè)組合幾何體的表面積(包括底面積).
解:(1)如圖.
(2)幾何體的表面積為:(3+4+5)×2=24.

15.如圖是某工件的三視圖,求此工件的全面積.
 
解:由三視圖可知,該工件是底面半徑為10 cm,高為30 cm的圓錐.
圓錐的母線長(zhǎng)為302+102=1010(cm),
圓錐的側(cè)面積為12×20π×1010=10010π(cm2),
圓錐的底面積為102×π=100π(cm2),
圓錐的全面積為100π+10010π=100(1+10)π(cm2).

03  綜合題
16.如圖是一個(gè)幾何體的三視圖(單位:厘米).
 
(1)寫出這個(gè)幾何體的名稱;
(2)根據(jù)圖中數(shù)據(jù)計(jì)算這個(gè)幾何體的表面積;
(3)如果一只螞蟻要從這個(gè)幾何體中的點(diǎn)B出發(fā),沿表面爬到AC的中點(diǎn)D,請(qǐng)你求出這個(gè)線路的最短路程.
 
解:(1)圓錐.
(2)S表=S扇形+S圓=πrl+πr2=12π+4π=16π(平方厘米).
(3)如圖,將圓錐側(cè)面展開,線段BD為所求的最短路程.
由條件得,∠BAB′=120°,
∵C為弧BB′的中點(diǎn),AB=6厘米,
∴BD=33厘米.

 
章末復(fù)習(xí)(四) 投影與視圖
01  基礎(chǔ)題
知識(shí)點(diǎn)1 投影
1.如圖,箭頭表示投影線的方向,則圖中熱水瓶的正投影是(A)
 
2.如圖所示,夜晚路燈下同樣高的旗桿,離路燈越近,它的影子(B)
 
A.越長(zhǎng) 
B.越短 
C.一樣長(zhǎng) 
D.無法確定
3.如圖所示,分別是兩棵樹及其影子的情形.
(1)哪個(gè)圖反映了陽光下的情形?哪個(gè)圖反映了路燈下的情形?你是用什么方法判斷的?試畫圖說明;
(2)在兩幅圖中畫出人的影子.
 圖1
 圖2


解:(1)圖1是路燈下的情形;圖2是陽光下的情形;如圖所示,作出光線,光線互相平行,說明是陽光下的投影;光線交于一點(diǎn),說明是路燈下的投影.
(2)人的影子如圖所示.

知識(shí)點(diǎn)2 三視圖
4.(自貢中考)下面幾何體中,主視圖是矩形的是(A)
 
5.如圖所示的四個(gè)幾何體,其中左視圖與俯視圖相同的幾何體共有(B)
 
A.1個(gè)               B.2個(gè)                   C.3個(gè)              D.4個(gè)
6.(成都中考)如圖所示的幾何體是由4個(gè)大小相同的小立方體搭成,其俯視圖是(C)
 
7.(石家莊四十二中一模)某幾何體的主視圖和左視圖如圖所示,則該幾何體可能是(C)
 
A.長(zhǎng)方體             B.圓錐                C.圓柱            D.球
8.(大慶中考)由若干邊長(zhǎng)相等的小正方體構(gòu)成的幾何體的主視圖、左視圖、俯視圖如圖所示,則構(gòu)成這個(gè)幾何體的小正方體有(B)
 
A.5個(gè)            B.6個(gè)             C.7個(gè)             D.8個(gè)
9.(青島中考)已知某幾何體的三視圖如圖所示,其中俯視圖為正六邊形,則該幾何體的表面積為48+123.
 
02  中檔題
10.(棗莊中考)有3塊積木,每一塊的各面都涂上不同的顏色,3塊的涂法完全相同.現(xiàn)把它們擺放成不同的位置(如圖),請(qǐng)你根據(jù)圖形判斷涂成綠色一面的對(duì)面涂的顏色是(C)
 
A.白             B.紅              C.黃          D.黑
11.如圖1是一個(gè)正三棱柱毛坯,將其截去一部分,得到一個(gè)工件如圖2.對(duì)于這個(gè)工件,俯視圖、主視圖依次是(D)
 
 
A.c,a                B.c,d                C.b,d            D.b,a
12.如圖是由一些大小相同的小立方體組成的幾何體的主視圖和左視圖,則組成這個(gè)幾何體的小立方體的個(gè)數(shù)不可能是(D)
 
A.3                 B.4              C.5            D.6
13.如圖是某幾何體的三視圖,根據(jù)圖中所標(biāo)的數(shù)據(jù)求得該幾何體的體積為(B)
A.236π               B.136π  
C.132π              D.120π
 
14.如圖,陽光通過窗口照到室內(nèi),在地面上留下2.7 m寬的亮區(qū)DE,已知亮區(qū)一邊到窗下的墻腳距離CE=8.7 m,窗高AB=1.8 m,那么窗口底邊離地面的高度BC=4m.
  
解析:∵AE∥BD,∴Rt△AEC∽R(shí)t△BDC.∴BCAC=DCEC.設(shè)BC為x,則AC=x+1.8,EC=8.7,DC=EC-ED=8.7-2.7=6,∴可得方程x6=x+1.88.7.解得x=4.∴窗口底邊離地面的高度BC=4 m.

15.(北京中考)如圖,小軍、小珠之間的距離為2.7 m,他們?cè)谕槐K路燈下的影長(zhǎng)分別為1.8 m,1.5 m,已知小軍、小珠的身高分別為1.8 m,1.5 m,則路燈的高為3m.
 
解析:如圖,因?yàn)樾≤姟⑿≈槎际巧砀吲c影長(zhǎng)相等,∴∠E=∠F=45°.∴A B=BE=BF.設(shè)路燈的高AB為x m,則BD=x-1.5,BC=x-1.8.又CD=2.7,∴x-1.5+x-1.8=2.7.解得x=3.

03  綜合題
 16.某興趣小組開展課外活動(dòng),A、B兩地相距12米,小明從點(diǎn)A出發(fā)沿AB方向勻速前進(jìn),2秒后到達(dá)點(diǎn)D,此時(shí)他(CD)在某一燈光下的影長(zhǎng)為AD,繼續(xù)按原速行走2秒到達(dá)點(diǎn)F,此時(shí)他在同一燈光下的影子仍落在其身后,并測(cè)得這個(gè)影長(zhǎng)為1.2米,然后他將速度提高到原來的1.5倍,再行走2秒到達(dá)點(diǎn)H,此時(shí)他(GH)在同一燈光下的影長(zhǎng)為BH(點(diǎn)C、E、G在一條直線上).
(1)請(qǐng)?jiān)趫D中畫出光源O點(diǎn)的位置,并畫出位于點(diǎn)F時(shí)在這個(gè)燈光下的影長(zhǎng)FM(不寫畫法);
(2)求小明原來的速度.
 
解:(1)如圖.
(2)設(shè)小明原來的速度為x m/s,則AD=DF=CE=2x m,F(xiàn)H=EG=3x m,AM=(4x-1.2)m,BM=(13.2-4x)m.
∵CG∥AB,
∴△OCE∽△OAM,△OEG∽△OMB.
∴CEAM=OEOM,EGMB=OEOM.
∴CEAM=EGMB,即2x4x-1.2=3x13.2-4x.
∴20x2-30x=0.
解得x1=1.5,x2=0(不合題意,舍去).
經(jīng)檢驗(yàn),x=1.5是原方程的解,故x=1.5.
答:小明原來的速度為1.5 m/s.


本文來自:逍遙右腦記憶 http://portlandfoamroofing.com/chusan/1114546.html

相關(guān)閱讀:2018年初三數(shù)學(xué)下階段檢測(cè)試卷(宜興丁蜀區(qū)帶答案)