中考幾何總復(fù)習(xí)知識考點:矩形、菱形、正方形
三、矩形
矩形是特殊的平行四邊形,從運動變化的觀點來看,當(dāng)平行四邊形的一個內(nèi)角變?yōu)?0時,其它的邊、角位置也都隨之變化。因此矩形的性質(zhì)是在平行四邊形的基礎(chǔ)上擴充的。
1、矩形:有一個角是直角的平行四邊形叫做短形(通常也叫做長方形)
2、矩形性質(zhì)定理1:矩形的四個角都是直角。
3.矩形性質(zhì)定理2:矩形的對角線相等。
4、矩形判定定理1:有三個角是直角的四邊形是矩形。
說明:因為四邊形的內(nèi)角和等于360度,已知有三個角都是直角,那么第四個角必定是直角。
5、矩形判定定理2:對角線相等的平行四邊形是矩形。
說明:要判定四邊形是矩形的方法是:
法一:先證明出是平行四邊形,再證出有一個直角(這是用定義證明)
法二:先證明出是平行四邊形,再證出對角線相等(這是判定定理1)
法三:只需證出三個角都是直角。(這是判定定理2)
四、菱形
菱形也是特殊的平行四邊形,當(dāng)平行四邊形的兩個鄰邊發(fā)生變化時,即當(dāng)兩個鄰邊相等時,平行四邊形變成了菱形。
1、菱形:有一組鄰邊相等的平行四邊形叫做菱形。
2、菱形的性質(zhì)1:菱形的四條邊相等。
3、菱形的性質(zhì)2:菱形的對角線互相垂直,并且每一條對角線平分一組對角。
4、菱形判定定理1:四邊都相等的四邊形是菱形。
5、菱形判定定理2:對角線互相垂直的平行四邊形是菱形。
說明:要判定四邊形是菱形的方法是:
法一:先證出四邊形是平行四邊形,再證出有一組鄰邊相等。(這就是定義證明)。
法二:先證出四邊形是平行四邊形,再證出對角線互相垂直。(這是判定定理2)
法三:只需證出四邊都相等。(這是判定定理1)
(五)正方形
正方形是特殊的平行四邊形,當(dāng)鄰邊和內(nèi)角同時運動時,又能使平行四邊形的一個內(nèi)角為直角且鄰邊相等,這樣就形成了正方形。
1、正方形:有一組鄰邊相等并且有一個角是直角的平行四邊形叫做正方形。
2、正方形性質(zhì)定理1:正方形的四個角都是直角,四條邊都相等。
3、正方形性質(zhì)定理2:正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角。
4、正方形判定定理互:兩條對角線互相垂直的矩形是正方形。
5、正方形判定定理2:兩條對角線相等的菱形是正方形。
注意:要判定四邊形是正方形的方法有
方法一:第一步證出有一組鄰邊相等;第二步證出有一個角是直角;第三步證出是平行四邊形。(這是用定義證明)
方法二:第一步證出對角線互相垂直;第二步證出是矩形。(這是判定定理1)
方法三:第一步證出對角線相等;第二步證出是菱形。(這是判定定理2)
本文來自:逍遙右腦記憶 http://portlandfoamroofing.com/chuzhong/328280.html
相關(guān)閱讀:如何突破初三數(shù)學(xué)期末壓軸題