初二數(shù)學分式方程知識的應用舉例

編輯: 逍遙路 關鍵詞: 初中數(shù)學 來源: 高中學習網(wǎng)


  【—上海初二數(shù)學分式方程應用舉例】解分式方程的基本思路是將分式方程化為整式方程,具體做法是“去分母”。

  例1:解方程(1)x/(x+1)=2x/(3x+3)+1

  兩邊乘3(x+1)去分母得

  3x=2x+(3x+3)

  3x=5x+3

  2x=-3

  ∴x=-3/2

  經(jīng)檢驗,x=-3/2是原方程的解

  (2)2/(x-1)=4/(x^2-1)

  兩邊乘(x+1)(x-1)去分母得

  2(x+1)=4

  2x+2=4

  2x=2

  ∴x=1

  檢驗 :把x=1帶入原方程,使分母為0,是增根。

  故原方程2/(x-1)=4/(x^2-1 )無解 。

  (3) 2x-3+1/(x-5)=x+2+1/(x-5)

  兩邊同時減1/(x-5),得x=5

  代入原方程,使分母為0,所以x=5是增根

  所以方程無解!

  檢驗:把x=a 帶入最簡公分母,若x=a使最簡公分母為0,則a是原方程的增根.若x=a使最簡公分母不為零, 則a是原方程的根。

  歸納:即方程兩邊同乘最簡公分母,這也是解分式方程的一般思路和做法。 檢驗格式:把x=a 帶入最簡公分母,若x=a使最簡公分母為0,則a是原方程的增根.若x=a使最簡公分母不為零,則a是原方程的根。

  當然我們在解題的時候可以憑經(jīng)驗判斷是否有解。


本文來自:逍遙右腦記憶 http://portlandfoamroofing.com/chuzhong/213103.html

相關閱讀:初中數(shù)學趣味題目大全之愛因斯坦的數(shù)學游戲