初中數(shù)學概念教學

編輯: 逍遙路 關鍵詞: 初中數(shù)學 來源: 高中學習網(wǎng)


概念是客觀事物本質屬性在人們頭腦中的反映。數(shù)學概念反映現(xiàn)實世界的空間形式和數(shù)量關系的本質屬性的思維形式。在中學數(shù)學教學中,正確理解數(shù)學概念是掌握數(shù)學基礎知識的前提,是學好定理、公式、法則和數(shù)學思想的基礎,搞清概念是提高解題能力的關鍵。只要對概念理解的深透,才能在解題中做出正確的判斷。因此,在數(shù)學教學過程中,數(shù)學概念的教學顯得尤為重要。學生數(shù)學能力的發(fā)展取決于他對數(shù)學概念的牢固掌握與深刻理解與否。而在現(xiàn)實中,許多學生對數(shù)學的學習,只注重盲目的做習題,不注重對數(shù)學概念的掌握,對基本概念含糊不清。做習題不懂得從基本概念入手,思考解題依據(jù),探索解題方法,而是跟著感覺走。這樣的學習,必然越學越糊涂,因而數(shù)學概念的教學在整個數(shù)學教學中有其不容忽視的地位與作用。下面僅結合本人平時的教學實踐,談一點膚淺的認識與體會。

一、概念的引入:

1.從學生已有的生活經(jīng)驗、熟知的具體事例中進行引入。如“圓”的概念的引出前,可讓同學們聯(lián)想生活中見過的年輪、太陽、五環(huán)旗、圓狀跑道等實物的形狀,再讓同學用圓規(guī)在紙上畫圓,也可用準備好的定長的線繩,將一端固定,而另一端帶有鉛筆并繞固定端旋轉一周,從而引導同學們自己發(fā)現(xiàn)圓的形成過程,進而總結出圓的特點:圓周上任

意一點到圓心的距離相等,從而猜想歸納出“圓”的概念。

2.在復習舊概念的基礎上引入新概念。

概念復習的起步是在已有的認知結構的基礎上進行的。因此,在教學新概念前,如果能對學生認知結構中原有的適當概念作一些類比引入新概念,則有利于促進新概念的形成。例如:在教學一元二次方程時,就可以先復習一元一次方程,因為一元一次方程是基礎,一元二次方程是延伸,復習一元一次方程是合乎知識邏輯的。通過比較得出兩種方程都是只含有一個未知數(shù)的整式方程,差異僅在于未知數(shù)的最高次數(shù)不同。由此,很容易建立起“一元二次方程”的概念。

二、分析概念含義,抓住概念本質。

1.揭示含義,突出關鍵詞。

數(shù)學概念嚴謹、準確、簡練。教師的語言對于學生感知教材,形成概念有重要的意義,因此要特別注意用詞的嚴格性和準確性。教師要用生動、形象的語言講清概念的每一個字、句、符號的意義,特別是關鍵的字、詞、句,這是指導學生掌握概念,并認識概念的前提。

如:“分解因式”概念:“把一個多項式化成幾個整式的積的形式,這種變形叫把這個多項式分解因式!痹诮虒W中學生往往只注重“積”這個關鍵詞,而忽略了“整式”,易造成對分解因式的錯誤認識。所以在教學中務必強調,并與學生分析這兩處關鍵詞的含義,加深對概念的理解。

2.分析概念,抓住本質。

數(shù)學概念大多數(shù)是通過描述定義給出他的確切含義,他屬于理性認識,但來源于感性認識,所以對于這類概念一定要抓住它的本質屬性。

如:“互為補角”的概念:“如果兩個角的和是平角,則這兩個角互為補角!逼浔举|屬性:(1)必須具備兩個角之和為180°,一個角為180°或三個角為180°都不是互為補角,互補角只就兩個角而言。(2)互補的兩個角只是數(shù)量上的關系,這與兩個角的位置無關。通過這兩個本質屬性的分析,學生對“互為補角”有了全面的理解。

3.剖析變化,深化概念。

數(shù)學概念都是從正面闡述,一些學生只從文字上理解,以為掌握了概念的本質,而碰到具體的數(shù)學問題卻又難以做出正確的判斷。因此,在教學過程中,必須在學生正面認識概念的基礎上,通過反例或變式從反面去剖析數(shù)學概念,凸顯對象中隱蔽的本質要素,加深學生對概念理解的全面性。

如:在學習對頂角的概念后,讓學生做題:

(1)下列表示的兩個角,哪組是對頂角?

(a) 兩條直線相交,相對的兩個角

(b) 頂點相同的兩個角

(c) 同一個角的兩個鄰補角

前后聯(lián)系,多方印證,加深認識。

部分學生對概念的全面理解不可能一蹴而就,而是要經(jīng)歷:實踐——認識——再實踐——再認識的過程,這是個“正確”與“錯誤”搖擺不定的過程,更是一個對概念的理解不斷深化的過程。事實上,學生在初步學習某一數(shù)學概念之后,對概念的理解并不怎么深刻,而是通過對后續(xù)知識的學習讓學生回過頭來再對概念進行加深理解,遵循“循環(huán)反復,螺旋上升”的學習原則。

如:學生剛接觸“二次函數(shù)”的概念時,僅能從形式上判斷某一函數(shù)是否為二次函數(shù)。但當他們學習了其圖象,研究了圖象的性質后就能根據(jù)a得出圖象的開口方向,由a、b確定圖象的對稱軸,由a、b、c給出圖象的頂點坐標。這時對二次函數(shù)的概念自是記憶深刻,能脫口而出了。


本文來自:逍遙右腦記憶 http://portlandfoamroofing.com/chuzhong/747527.html

相關閱讀:九年級同步數(shù)學公式專題總結(四)