初中數(shù)學正比例函數(shù)的公式應用

編輯: 逍遙路 關鍵詞: 初中數(shù)學 來源: 高中學習網(wǎng)


  【—正比例函數(shù)公式應用】正比例函數(shù)是一次函數(shù)的特殊形式,在線性規(guī)劃問題中體現(xiàn)的力量也是無窮的。

  正比例函數(shù)公式應用

  首先通過5個問題,得出5個函數(shù),觀察這5個函數(shù),可納出正比例函數(shù)概念。要能判斷一個函數(shù)是否為正比例函數(shù)。然后畫出4個正比例函數(shù)圖象,觀察歸納出正比例函數(shù)的性質。

  根據(jù)上面的5個實際問題,我們得到5個函數(shù)。下面觀察這5個函數(shù)的共同點,以便歸納出正比例函數(shù)概念。

 、賖=2t ;② m=7.8n; ③s=0.5t; ④T=t/3 ;⑤y=200x。

  這5個函數(shù)有什么共同的特點?

  1:都有自變量。

  2:都是函數(shù)。

  3:都有常量。

  這5個函數(shù)的右邊都是常量和自變量的什么形式?

  這5個函數(shù)都是常量與自變量的乘積形式,都可表達為y=kx(k不等于0)的形式。

  下面是4個函數(shù),請判斷哪些是正比例函數(shù)?

  ①y=3; ②y=2x; ③y=1/x; ④y=x^2。

  解答:

 、谑钦壤瘮(shù)。因為它符合正比例函數(shù)的的定義。①,③,④則不是正比例函數(shù)。①:它為常數(shù)函數(shù),無自變量。③:它為反比例函數(shù)。 ④:它為二次函數(shù)。

  我們做題時重點就是正比例函數(shù)概念及正比例函數(shù)的性質理解。


本文來自:逍遙右腦記憶 http://portlandfoamroofing.com/chuzhong/233153.html

相關閱讀:初三數(shù)學復習方法的幾點建議(4)