2012屆高考數學第一輪圓導學案復習

編輯: 逍遙路 關鍵詞: 高三 來源: 高中學習網
高三數學理科復習33----圓
【高考要求】:圓的標準方程和一般方程(C)
【學習目標】:掌握圓的標準方程與一般方程,能根據問題的條件選擇恰當的形式求圓的方程;理解圓的標準方程與一般方程之間的關系,會進行互化.
【知識復習與自學質疑】
(一)問題:
1、圓的方程形式有幾種?

2、如何確定圓的方程?

3、方程 表示圓的條件

(二)練習:
1.圓 的標準方程為
若 則以 為直徑的圓的方程為
2.在圓 中,若滿足 條件時,圓過原點;滿足 條件時,圓心在 軸上;滿足 條件時,圓與 軸相切;滿足 條件時,圓與 相切;滿足 條件時,圓與兩坐標軸均相切。
3.若方程 表示圓,則 的值為
4.動圓 的半徑的取值范圍是
5.如果方程 所表示的曲線關于直線 對稱,那么必有
6.若點 在圓 的內部,則實數 的取值范圍為
【例題精講】
1.求與 軸相切,圓心在直線 上,且被直線 截下的弦長為2 的圓的方程


2.(1)求過三點 的圓的方程,并指出這個圓的半徑和圓心坐標
(2)一圓經過 兩點,且在兩坐標軸上的四個截距之和為2,求此圓的方程


3.已知 ,圓
(1)若圓 的圓心在直線 上,求圓C的方程;
(2)圓C是否過定點?如果過定點,求出定點的坐標;如果不過定點,說明理由。


【矯正反饋】
1、過點且圓心在直線 上的圓的方程是

2、圓 以原點為圓心,且在直線 上截得弦長為8,則圓 的方程是

3、點 從 出發(fā),沿單位圓 逆時針方向運動 弧長到達 點,則點 的坐標為

4、方程 所表示的封閉曲線所圍成的圖形面積為

【遷移應用】
1、求過點 ,且與已知圓 切于點 的圓的方程為

2、經過直線 與 的交點,圓心為點 的圓的一般方程為

3、圓 關于直線 對稱的圓的方程是

4、若半徑為1的圓分別與 軸的正半軸和射線 相切,則這個圓的方程為

5、圓心在直線 上的圓 與 軸交于兩點 ,則圓 的方程為
6、若圓 上至少有三個不同的點到直線 的距離為 ,則直線 的傾斜角的取值范圍是

7、圓 上的點到直線 的最大距離與最小距離的差是

8、過點 的直線將圓 分成兩段弧,當劣弧所對的圓心角最小時,直線 的斜率 =


本文來自:逍遙右腦記憶 http://portlandfoamroofing.com/gaosan/59747.html

相關閱讀:2012屆高考數學第一輪導學案復習:二次函數