2012屆高考理科數學第二輪復習三角函數教案

編輯: 逍遙路 關鍵詞: 高三 來源: 高中學習網




2012屆高考數學二輪復習
專題四 三角函數
【重點知識回顧】
三角函數是傳統(tǒng)知識內容中變化最大的一部分,新教材處理這一部分內容時有明顯的降調傾向,突出正、余弦函數的主體地位,加強了對三角函數的圖象與性質的考查,因此三角函數的性質是本復習的重點。第一輪復習的重點應放在本知識的重現上,要注重抓基本知識點的落實、基本方法的再認識和基本技能的掌握,力求系統(tǒng)化、條理化和網絡化,使之形成比較完整的知識體系;第二、三輪復習以基本綜合檢測題為載體,綜合試題在形式上要貼近高考試題,但不能上難度。當然,這一部分知識最可能出現的是“結合實際,利用少許的三角變換(尤其是余弦的倍角公式和特殊情形下公式的應用)考查三角函數性質”的命題,因此,建議三角函數的復習應控制在本知識的范圍和難度上,這樣就能夠適應未高考命題趨勢�?傊�,三角函數的復習應立足基礎、加強訓練、綜合應用、提高能力
方法技巧:
1.八大基本關系依據它們的結構分為倒數關系、商數關系、平方關系,用三角函數的定義反復證明強化記憶,這是最有效的記憶方法。誘導公式用角度制和弧度制表示都成立,記憶方法可概括為“奇變偶不變,符號看象限”,變與不變是相對于對偶關系的函數而言的
2.三角函數值的符號在求角的三角函數值和三角恒等變換中,顯得十分重要,根據三角函數的,可簡記為“一全正,二正弦,三兩切,四余弦”,其含義是:在第一象限各三角函數值皆為正;在第二象限正弦值為正;在第三象限正余切值為正;在第四象限余弦值為正
3.在利用同角三角函數的基本關系式化簡、求值和證明恒等關系時,要注意用是否“同角”區(qū)分和選用公式,注意切化弦、“1”的妙用、方程思想等數學思想方法的運用,在利用誘導公式進行三角式的化簡、求值時,要注意正負號的選取
4.求三角函數值域的常用方法:
求三角函數值域除了判別式、重要不等式、單調性等方法之外,結合三角函數的特點,還有如下方法:
(1)將所給三角函數轉化為二次函數,通過配方法求值域;
(2)利用 的有界性求值域;
(3)換元法,利用換元法求三角函數的值域,要注意前后的等價性,不能只注意換元,不注意等價性
5. 三角函數的圖象與性質
(一)列表綜合三個三角函數 , , 的圖象與性質,并挖掘:
⑴最值的情況;
⑵了解周期函數和最小正周期的意義.會求 的周期,或者經過簡單的恒等變形可化為上述函數的三角函數的周期,了解加了絕對值后的周期情況;
⑶會從圖象歸納對稱軸和對稱中心;
的對稱軸是 ,對稱中心是 ;
的對稱軸是 ,對稱中心是
的對稱中心是
注意加了絕對值后的情況變化.
⑷寫單調區(qū)間注意 .
(二)了解正弦、余弦、正切函數的圖象的畫法,會用“五點法”畫正弦、余弦函數和函數 的簡圖,并能由圖象寫出解析式.
⑴“五點法”作圖的列表方式;
⑵求解析式 時處相 的確定方法:代(最高、低)點法、公式 .
(三)正弦型函數 的圖象變換方法如下:
先平移后伸縮
   的圖象
得 的圖象
得 的圖象
得 的圖象
得 的圖象.
先伸縮后平移
的圖象
得 的圖象
得 的圖象
得 的圖象 得 的圖象.
【典型例題】
例1.已知 ,求(1) ;(2) 的值.
解:(1) ;
(2)
.
說明:利用齊次式的結構特點(如果不具備,通過構造的辦法得到),進行弦、切互化,就會使解題過程簡化
例2.已知向量
,且 ,
(1)求函數 的表達式;
(2)若 ,求 的最大值與最小值
解:(1) , , ,又 ,
所以 ,
所以 ,即 ;
(2)由(1)可得,令 導數 ,解得 ,列表如下:

t-1(-1,1)1(1,3)
導數0-0+
極大值遞減極小值遞增
而 所以
說明:本題將三角函數與平面向量、導數等綜合考察,體現了知識之間的融會貫通。
例3. 平面直角坐標系有點
(1)求向量 和 的夾角 的余弦用 表示的函數 ;
(2)求 的最值.
解:(1) ,


(2) , 又 ,
, , .
說明:三角函數與向量之間的聯系很緊密,解題時要時刻注意
例4. 設 q Î[0, ], 且 cos2q+2msinq-2m-2<0 恒成立, 求 m 的取值范圍.
解法 1 由已知 0≤sinq≤1 且 1-sin2q+2msinq-2m-2<0 恒成立.
令 t=sinq, 則 0≤t≤1 且 1-t2+2mt-2m-2<0 恒成立.
即 f(t)=t2-2mt+2m+1=(t-m)2-m2+2m+1>0 對 tÎ[0, 1] 恒成立.
故可討論如下:
(1)若 m<0, 則 f(0)>0. 即 2m+1>0. 解得 m> , ∴ <m<0;
(2)若 0≤m≤1, 則 f(m)>0. 即 -m2+2m+1>0. 亦即 m2-2m-1<0. 解得: 1 <m<1+ , ∴0≤m≤1;
(3)若 m>1, 則 f(1)>0. 即 0×m+2>0. ∴mÎR, ∴m>1.
綜上所述 m> . 即 m 的取值范圍是 ( , +∞).
解法 2 題中不等式即為 2(1-sinq)m>-1-sin2q.∵qÎ[0, ], ∴0≤sinq≤1.
當 sinq=1 時, 不等式顯然恒成立, 此時 mÎR;
當 0≤sinq<1 時, 恒成立.
令 t=1-sinq, 則 tÎ(0, 1], 且 恒成立.
易證 g(t)=1- 在 (0, 1] 上單調遞增, 有最大值 - ,
∴m> . 即 m 的取值范圍是 ( , +∞).
說明:三角函數與不等式綜合,注意“恒成立”問題的解決方式

【模擬演練】
一、選擇
1.點 位于( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
2.函數 在區(qū)間( , )內的圖象大致是( )

A. B. C. D.



6.已知∠A.∠B.∠C為三角形的三個內角,且 ,則△ABC是( �。�
A.等邊三角形  B.等腰三角形  C.直角三角形 D.無法確定
7.關于函數 的圖象,有以下四個說法:
①關于點 對稱;②關于點 對稱;
③關于直線 對稱;④關于直線 對稱
則正確的是(  )
A.①③ B.②③ C.①④  D.②④


9.如圖,某走私船在航行中被我軍發(fā)現,我海軍艦艇在 處獲悉后,測出該走私船在方位角為 ,距離為 的 處,并測得走私船正沿方位角為 的方向,以 的速度向小島靠攏,我海軍艦艇立即以 的速度沿直線方向前去追擊.艦艇并在B處靠近走私船所需的時間為 ( )
A.20 B. C.30 D.50

11.在 中, 分別為三個內角 的對邊,設向量 ,若向量 ,則 的值為( )
A. B. C. D.

二、填空
13.已知向量 且 ,則與 方向相反的單位向量的坐標為_________。

原專題三的平面向量與三角函數的第15題

16.已知函數 ( , , )的一段圖象如圖所示,則這個函數的單調遞增區(qū)間為 。


18.(12分)已知 ,
(1)求 的最大值和最小值;
(2)若不等式 在 上恒成立,求m的取值范圍。
19.(12分)已知向量 ,且 分別為 的三邊 所對的角。
(1)求角C的大小;
(2)若 成等差數列,且 ,求c的邊長。

21.(12)已知:向量 , ,函數
(1)若 且 ,求 的值;
(2)求函數 的單調增區(qū)間以及函數取得最大值時,向量 與 的夾角.

專題訓練答案
1.D 解析: ,易知 角終邊在第三象限,從而有 為正, 為負,所以點 位于第四象限。
2.A.解:y= ,所以,選A.。



6.B.解:因為 ,所以
即: ,有
即 = ,即
則 ,又因為 為三角形的內角,則 ,所以為等腰三角形。
7.B.解:當 時, =1,當x= 時, =0,所以,②③正確。

9.B 解:設艦艇收到信號后 在 處靠攏走私船,則 , ,又 nmile, .
由余弦定理,得


.
化簡,得
,
解得 (負值舍去).
答案:B

11.B 解析:由 ,得 ,又 ,所以 ,所以 。

13. 解:因為 ,所以 ,解得: ,所以 ,所以 ,所以與 方向相反的單位向量的坐標為 。


16. 解:由圖象可知: ;A= =3。所以,y=3sin(2x+ ),
將 代入上式,得: =1, =2k + ,即 =2k + ,
由| |< ,可得: 所以,所求函數解析式為: 。
∵當 時, 單調遞增



18.解:(1)


。 4分
所以當 =1時 。
所以當 =-1時 。 6分
(2) 在 上恒成立,
即 在 上恒成立,
只需 , 。 8分
令 , ,

所以當 時, 有最小值 , ,
故 。 12分
19.解:(1) ,
,
。 2分
又 , ,
。 4分
, 。 6分
(2) 成等差數列, 。
。 8分
又 , 。
, 。 10分
, ,
, 。 12分


21.解:∵ = 。 2分
(1)由 得 即 ,
∵     ∴ 或
∴ 或 。 4分
(2)∵

。 8分
由 得 ,
∴ 的單調增區(qū)間 . 10分
由上可得 ,當 時,由 得
, ,   ∴ 。 12分




本文來自:逍遙右腦記憶 http://portlandfoamroofing.com/gaosan/41211.html

相關閱讀:2012屆高考數學第一輪導學案復習:二次函數

闂傚倸鍊搁崐鎼佸磹閻戣姤鍤勯柛鎾茬閸ㄦ繃銇勯弽顐杭闁逞屽墮閸熸潙鐣烽妸褉鍋撳☉娅亝绂嶆潏銊х瘈闁汇垽娼у瓭闂佺ǹ锕ら顓犳閹炬剚娼╅柤鍝ユ暩閸樺崬顪冮妶鍡楀闁稿﹥娲熷鎼佸籍閸喓鍘藉┑鐘绘涧濡盯宕洪敐澶嬬厸鐎光偓鐎n剙鍩岄柧缁樼墵閺屽秷顧侀柛鎾跺枛楠炲啳顦崇紒缁樼箞瀹曡埖顦版惔锝傛(闂傚倷绀侀幖顐ょ矙娓氣偓瀹曘垺绂掔€n偄浜楅梺闈涱檧婵″洨绮绘ィ鍐╃厵閻庣數枪娴犙囨煙閸愬弶鍣洪柕鍥у閺佹劙宕ㄩ鐘荤崜缂傚倷鑳剁划顖滄崲閸儱鏄ラ柍褜鍓氶妵鍕箳瀹ュ浂妲銈嗘礋娴滃爼寮婚埄鍐ㄧ窞閻庯綆浜炴禒绋款渻閵堝啫鍔滅紒璇茬墕椤繐煤椤忓嫮顔愰梺缁樺姈瑜板啯淇婅濮婃椽宕ㄦ繝鍌氼潊闂佸搫鎳忕划宀勫煝閹惧顩烽悗锝庡亐閹锋椽鏌i悩鍙夋悙鐎殿喖鐖奸獮鎴︽晲婢跺鍘甸梺鎯ф禋閸嬪懐浜搁銏$叆闁哄洦锚閻忔煡鏌$仦鑺ヮ棞妞ゆ挸銈稿畷銊╊敊闁款垰浜炬い鎺戝閻撴稑顭跨捄鐚村姛濠⒀勫灴閺屾盯寮崸妤€寮伴梺闈涙閹虫ê顕f繝姘ㄩ柨鏃€鍎抽獮宥夋⒒娴h櫣甯涢柛銊﹀劶閹筋偆绱掗悙顒€绀冪€规洜鏁稿Σ鎰板箳濡ゅ﹥鏅╅梺鍏间航閸庨亶寮冲Δ鍐=濞达絼绮欓崫娲煙閻熺増鎼愰柣锝呭槻椤粓鍩€椤掑嫬鏄ラ柍鈺佸暞婵挳寮堕悙闈涱暭闁稿鎳樺濠氬磼濞嗘劗銈板┑鈩冦仠閸旀垵顫忛挊澶樺悑濠㈣泛锕﹂敍娆忊攽閻樼粯娑фい鎴濇搐閻e灚绗熼埀顒勫箖濡ゅ懏鏅查幖绮瑰墲閻忓秹姊虹粙娆惧剾濞存粍绻堟俊鐢稿礋椤栨艾鍞ㄩ梺闈浤涚仦鐐啇濠碉紕鍋戦崐鏍蓟閵娿儍娲敇閻戝棙缍庡┑鐐叉▕娴滄粌顔忓┑鍡忔斀闁绘ɑ褰冮顏堟煕閿濆骸寮慨濠冩そ楠炴牠鎮欓幓鎺濇綂闂備胶枪椤戝棝宕濋弴銏犵叀濠㈣埖鍔栭崑銊х磼鐎n厽纭堕柛鏃撶畱椤啴濡堕崱妤冪懆闁诲孩鍑归崣鍐箖閿熺姵鍋勯柛娑橈工瀵灝鈹戦埥鍡楃仯闁告鍛殰闁煎摜鏁哥粻楣冩煕濞戝崬鏋ら柟鍐叉噽缁辨帗娼忛妸銉х懖濠电偟鍘х换妯讳繆濮濆矈妲鹃梺浼欑到閵堢ǹ顫忔ウ瑁や汗闁圭儤绻冮ˉ鏍ㄧ節閻㈤潧浜归柛瀣尰缁绘繄鍠婃径宀€锛熼梺绋跨箲閿曘垹顕i锕€纾奸柣鎰綑娴犲ジ鏌h箛鏇炰户閺嬵亜霉濠婂懎浜鹃柕鍥у瀵潙螖閳ь剚绂嶆ィ鍐┾拺閻犲洠鈧櫕鐏堥梺鎼炲灪閻擄繝宕洪姀鈩冨劅闁靛牆娲ㄩ弶鎼佹⒑閸︻叀妾搁柛銊у缁傚秹骞嗚閺€浠嬫煟濡櫣鏋冨瑙勧缚閻ヮ亪骞嗚閻撳ジ鏌$仦璇插闁宠鍨垮畷鍗烆潨閸℃﹫楠忓┑锛勫亼閸婃劙寮插┑瀣婵せ鍋撶€殿喛顕ч埥澶娢熼柨瀣垫綌闂備礁鎲¢〃鍫ュ磻濞戭澁缍栭柍鍝勬噺閳锋垿寮堕悙鏉戭€滄い鏂款樀閺岋繝宕ㄩ姘f瀰濡ょ姷鍋涢崯浼村箲閸曨厽鍋橀柍鈺佸枤濞兼棃姊绘担鍛婃儓閻犲洨鍋ゅ畷姗€宕滆閸嬫挻娼忛埡鍐紳闂佺ǹ鏈懝楣冨焵椤掆偓閹芥粎鍒掗弮鍫燁棃婵炵娅曢惄顖氱暦濮椻偓椤㈡瑩鎳栭埡鍐╃€梻鍌欐祰椤鐣峰鈧、姘愁槻妞ゆ柨绻愰埞鎴﹀炊閵夈倗鐩庨梻浣告惈閸燁偄煤閵堝牜鏆遍梻浣筋嚙鐎涒晜绌遍崫鍕ㄦ瀺闁哄洨濮靛畷鍙夌箾閹寸偛鐒归柛瀣尭閳藉鈻庣€n剛绐楅梻浣规た閸樺ジ顢栭崨瀛樼畳婵犵數濮磋墝闁稿鎸剧槐鎺楊敊閻e本鍣伴悗瑙勬礃濡炰粙宕洪埀顒併亜閹哄秹妾峰ù婊勭矒閺岀喖宕崟顒夋婵炲瓨绮撶粻鏍ь潖閾忓湱鐭欓柛鏍も偓鍐差潬闂備胶顢婂▍鏇㈠箲閸ヮ剙鏋侀柛鎰靛枛椤懘鏌曢崼婵囧櫧妞ゆ挾鍘ч—鍐Χ閸℃ǚ鎷归梺绋块閸熷潡鎮鹃悜钘壩ㄩ柕澶堝灪閺傗偓闂備胶绮崝鏇烆嚕閸泙澶娾堪閸曨厾顔曢柣搴f暩鏋柛妯绘尦閺岀喖顢涘鍐差伃闂佷紮绲剧换鍫濈暦閻旂⒈鏁嗛柛灞捐壘缁犮儳绱撻崒姘偓鎼佸磹閻戣姤鍊块柨鏇炲€归弲顏勨攽閻樻剚鍟忛柛鐘崇墵瀹曨垶骞嶉绛嬫綗闂佸湱鍎ゅ鐟扮暦婢舵劖鐓i煫鍥ㄧ▓閸嬫挸鈽夊鍨涙敽缂傚倸鍊搁崐椋庣矆娓氣偓閹矂宕掑☉姘兼锤闂佸壊鍋呭ú鏍及閵夆晜鐓曢柡鍥ュ妼閻忕姷绱掗埀顒勫礃椤忓懎鏋戦棅顐㈡处濞叉粓鎯岄崱娑欑厓鐟滄粓宕滈悢濂夋綎闁惧繗顫夌€氭岸鏌熺紒妯轰刊闁告柨顦辩槐鎾存媴閸撴彃鍓遍柣銏╁灲缁绘繂顕i銈傚亾閿濆骸鏋熼柍閿嬪灩缁辨帞鈧綆鍋掗崕銉╂煕鎼达紕绠崇紒杈ㄥ笚瀵板嫭绻濋崒銈嗘闂備礁鎲$敮妤冩暜閹烘缍栨繝闈涱儛閺佸嫰鏌i幇顒傛憼闁靛洦绻冮妵鍕閳╁喚妫冮悗瑙勬处娴滎亜鐣峰鈧、鏃堝礋椤掆偓閸旀帡姊婚崒姘偓鎼佸磹妞嬪海鐭嗗〒姘e亾妤犵偞鐗犻、鏇㈡晜閽樺缃曢梻浣虹《閸撴繈鎮疯閹矂骞樼紒妯衡偓鍨箾閹寸儐浼嗛柟杈剧畱閻鐓崶銊р姇闁绘挾鍠栭弻锟犲磼濮樺彉铏庨梺璇″枟閸ㄥ潡寮婚敓鐘叉そ濞达絿枪閳峰姊虹拠鈥虫灍闁挎洏鍨介獮鍐ㄢ枎閹寸偛纾柡澶屽仧婢ф鎯堣箛娑欌拻濞达綀妫勯崥褰掓煕閻樺啿濮夐柟骞垮灲瀹曞ジ濡烽妷銊︽啺闂備胶绮濠氬储瑜斿畷娆撴偐閻愭垝绨婚梺瑙勫閺呮盯鎮橀埡浣叉斀妞ゆ棁濮ょ粈鈧梺瀹狀潐閸ㄥ潡骞冮埡鍜佹晝妞ゎ偒鍘奸ˉ姘節閻㈤潧浠﹂柟绋款煼瀹曟椽宕橀鑲╋紱闂佸湱鍋撻幆灞解枔娴犲鐓熼柟閭﹀灠閻ㄦ椽寮崼銉︹拺缂侇垱娲橀弶褰掓煕鐎n偅灏い顏勫暣婵″爼宕卞Δ鍐噯闂佽瀛╅崙褰掑礈濞戙垹鐒垫い鎺嶆祰婢规ɑ銇勯敂璇茬仸闁炽儻濡囬幑鍕Ω閿曗偓绾绢垱绻涢幘鏉戝毈闁搞劋鍗冲畷婊勬綇閳哄啰锛濋梺绋挎湰濮樸劏鈪甸梻浣呵归鍡涘箲閸パ屾綎缂備焦蓱婵挳鏌i悢鐓庝喊闁搞倕顑囩槐鎾存媴閸撴彃鍓遍梺鎼炲妼婢у海绱撻幘瀵割浄閻庯綆浜為惈鍕⒑缁嬫寧婀扮紒顔奸叄閹箖鎳滈悽鐢电槇闂侀潧楠忕徊浠嬫偂閹扮増鐓曢柡鍐e亾婵炲弶绮庨崚鎺撶節濮橆儵銊╂煃閸濆嫬鈧宕㈤悽鐢电=濞达絽澹婇崕蹇旂箾绾绡€妞ゃ垺鎸歌灃濞达絽鍚€缁ㄥ鏌熼崗鑲╂殬闁搞劌鎼悾宄扮暆閸曨剛鍘搁悗鍏夊亾閻庯綆鍓涜ⅵ闂備胶纭堕弲顏嗘崲濠靛棛鏆︽俊銈呮噺閺呮繈鏌嶈閸撴稓妲愰悙瀵哥瘈闁稿本绮嶅▓楣冩⒑閹稿海绠撻柣妤佺矊鍗卞┑鐘崇閳锋垹鈧娲栧ú銊ф暜濞戞瑤绻嗘い鎰╁灩閺嗘瑦銇勯弴顏嗙М妤犵偞锕㈤、娆撴寠婢跺棗浜鹃柣鎴eГ閻撴洟鐓崶銊﹀鞍闁瑰弶鎮傞弻锝夘敇閻曚焦鐤佸┑顔硷攻濡炰粙骞婇敓鐘参ч柛娑樻嫅缂嶄線寮诲☉銏犳闁绘劕寮堕崳鍦磼闊彃鈧洟鍩為幋锕€纾兼繝褎鎸稿﹢杈╁垝婵犳艾钃熼柕澶涘閸橆亪妫呴銏℃悙妞ゆ垵鎳橀崺鈧い鎺嶇劍缁€澶岀磼缂佹ê鍝烘慨濠勭帛閹峰懘宕ㄩ棃娑氱Ш鐎殿喚鏁婚、妤呭礋椤愩値妲遍梻浣藉吹閸犳劙宕抽弶鎳ㄦ椽顢旈崟骞喚鐔嗛悹杞拌閸庢垿鏌涘Ο鍝勮埞闁宠鍨块幃娆撳矗婢舵ɑ锛侀梻浣告啞濮婄懓煤閻旂厧绠栨慨妞诲亾闁糕晪绻濆畷鎺楀Χ閸♀晛鏅梻鍌欒兌缁垶宕濋弴鐑嗗殨闁割偅娲栫粣妤佷繆椤栨氨姣為柛瀣尭閳绘捇宕归鐣屼壕闂備浇妗ㄧ粈渚€鈥﹂悜钘壩ュù锝堝€介弮鍫濆窛妞ゆ挾濯寸槐鍙夌節閻㈤潧孝闁挎洏鍊濆畷顖炲箮缁涘鏅╂繝銏e煐閸旀牠鍩涢幒鎳ㄥ綊鏁愰崨顔兼殘闂佽鍨伴悧鎾诲蓟閿濆憘鏃堝焵椤掆偓铻炴繝闈涳攻椤ャ倝姊绘担绛嬫綈妞ゆ梹鐗犲畷鏉款潩閼搁潧鍓归梺鐟板⒔缁垶鎮¢弴銏$叆闁哄啫娴傞崵娆愵殽閻愭潙濮嶉柡灞剧〒閳ь剨缍嗛崑鍛焊椤撶喆浜滄い鎰剁悼缁犵偞銇勯姀鈽嗘畷闁瑰嘲鎳愰幉鎾礋椤愵偂绱楁繝鐢靛Х閺佸憡鎱ㄩ幘顔藉剦濠㈣埖鍔曞洿闂佸憡娲﹂崑鍛村磿閹剧粯鈷掑ù锝囩摂閸ゅ啴鏌涢敐搴℃珝鐎规洘濞婇弫鎰緞閸艾浜惧ù锝堝€介悢鐑樺仒闁斥晛鍟弶鎼佹⒑鐠囨彃鍤辩紓宥呮瀹曟垿宕ㄧ€涙ê浠奸梺鍓插亝濞叉﹢鍩涢幒鎳ㄥ綊鏁愰崨顔兼殘闂佽鍨伴悧濠囧Φ閸曨噮妲烽梺绋款儐閹瑰洤顫忓ú顏呭仭闁哄瀵ч鈧梻浣烘嚀閸ゆ牠骞忛敓锟�/闂傚倸鍊搁崐椋庣矆娓氣偓楠炴牠顢曚綅閸ヮ剦鏁冮柨鏇楀亾闁汇倗鍋撶换婵囩節閸屾稑娅ら悗瑙勬礃閻擄繝寮诲☉銏犵疀闁稿繐鎽滈崙褰掓⒑缁嬭法绠茬紒顔芥崌瀵濡堕崶鈺冪厯闁荤姵浜介崝瀣垝閸偆绠鹃悗娑櫭▓鐘绘煕婵犲啰澧遍柟骞垮灩閳规垹鈧綆鍋掑Λ鍐ㄢ攽閻愭潙鐏﹂悽顖滃仜閿曘垽宕ㄩ娑欐杸闂佺粯鍔栬ぐ鍐箖閹达附鐓曢柡鍐e亾闁荤啿鏅涢锝嗙節濮橆厽娅滄繝銏f硾璋╅柍鍝勬噺閻撳繐顭跨捄铏瑰闁告梹娼欓湁闁绘ê鐪伴崑銏℃叏婵犲啯銇濈€规洦鍋婃俊鐑藉Ψ閵堝洦宕熷┑锛勫亼閸婃牕煤閿曞倸鐭楅柛鎰靛枛閺勩儵鏌嶈閸撴岸濡甸崟顖氱闁糕剝銇炴竟鏇熺節閻㈤潧袥闁稿鎹囬弻娑樜旈崘銊ゆ睏闂佸搫顑呯粔褰掑蓟閺囷紕鐤€閻庯綆浜炴禒鎯ь渻閵堝骸浜濇繛鍙夅缚閹广垹鈹戠€n偒妫冨┑鐐村灦閼归箖路閳ь剟姊虹拠鎻掝劉缁炬澘绉撮~婵嬪Ω閳轰胶鍔﹀銈嗗笒閸婂綊宕甸埀顒勬煟鎼淬垹鍤柛妯恒偢閳ワ箓宕归銉у枛閹剝鎯旈敐鍥╂憣濠电姷鏁搁崑娑樜熸繝鍐洸婵犻潧顑呴悡鏇㈡煙鐎电ǹ浜煎ù婊勭矒閺岀喖寮堕崹顕呮殺缂佺偓宕樺▔鏇犳閹烘绠涙い鎾跺櫏濡啴姊洪崫鍕拱缂佸鎹囬崺鈧い鎺戯功缁夌敻鏌涚€n亝顥為柡鍛埣椤㈡宕掑⿰鍜冪床闂備胶枪閺堫剛绮欓幋婢濆綊顢欑粵瀣啍闂佺粯鍔曞鍫曀夐姀鈶╁亾濞堝灝鏋涢柣鏍с偢閻涱噣骞囬鐔峰妳濡炪倖鏌ㄩ崥瀣枍閿燂拷 bjb@jiyifa.com 濠电姷鏁告慨鐑藉极閹间礁纾婚柣鎰惈閸ㄥ倿鏌涢锝嗙缂佺姵婢樿灃闁挎繂鎳庨弳娆戠棯閹岀吋闁哄瞼鍠栭獮鍡氼槾闁圭晫濞€閺屾稑鈻庤箛鏇狀啋闂佸搫鏈ú鐔风暦閻撳簶鏀介柟閭﹀帨瑜斿娲传閸曨剙顎涢梺鍛婃尵閸犳牠鐛崘顭戞建闁逞屽墴楠炲啫鈻庨幋鐐茬/闁哄鍋熸晶妤呮儓韫囨柧绻嗛柣鎰典簻閳ь剚娲滈幑銏犖旀担渚锤濡炪倖甯掗崐褰掞綖閺囥垺鐓欓柟顖嗗懏鎲兼繝娈垮灡閹告娊寮诲☉妯锋斀闁告洦鍋勬慨銏狀渻閵堝棙鐓ユい锕傛涧椤繘鎼归崷顓狅紲濠碘槅鍨崇划顖炲磿閹惧墎纾藉ù锝勭矙閸濈儤绻涢懠顒€鏋涚€规洘妞介崺鈧い鎺嶉檷娴滄粓鏌熼崫鍕棞濞存粍鍎抽埞鎴︽偐椤愵澀澹曢梻鍌欑贰閸撴瑧绮旂€电ǹ顥氶柛褎顨嗛悡娆撴倵閻㈢櫥瑙勭墡婵$偑鍊ら崑鍛哄Ο鍏煎床婵犻潧顑嗛ˉ鍫熺箾閹存繂鑸归柛鎾插嵆閺岋絾鎯旈姀锝咁棟濡炪倧缂氶崡铏繆閻㈢ǹ绀嬫い鏍ㄦ皑椤斿﹪姊洪悷鎵憼缂佹椽绠栧畷鎴﹀箻鐠囨彃寮烽棅顐㈡搐椤戝嫬效濡ゅ懏鈷戦柛婵嗗椤箓鏌涙惔銏㈠弨鐎规洘鍔欏畷濂稿即閻樻彃绲奸梻浣规偠閸庮垶宕濆鍥︾剨闁绘鐗勬禍婊堟煏婢诡垰鍟犻弸鍛存⒑閸濆嫮鐒跨紒韫矙閸╃偤骞嬮敃鈧悙濠囨煃閸濆嫬鈧悂宕归柆宥嗙厽閹兼番鍊ゅḿ鎰箾閸欏顏堬綖濠靛惟闁宠桨鑳堕鍡涙⒑缂佹〒褰掝敋瑜忕划濠氭偨閸涘﹦鍘甸梺缁樺灦钃遍柣鎿勭秮閺岀喖顢氶崱娆懶滃┑顔硷工椤嘲鐣烽幒鎴僵妞ゆ垼妫勬禍楣冩煕濠靛嫬鍔楅柛瀣尭椤繈濡烽妷銉綆闁诲氦顫夊ú姗€宕濆▎鎾跺祦閻庯綆鍠楅弲婵嬫煃瑜滈崜鐔煎箖閻愬搫鍨傛い鎰С缁ㄥ姊洪崷顓炲妺闁糕晛锕銊︾節濮橆厼鈧灚鎱ㄥΟ鐓庝壕閻庢熬鎷�